Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38530723

RESUMO

Most existing graph neural networks (GNNs) learn node embeddings using the framework of message passing and aggregation. Such GNNs are incapable of learning relative positions between graph nodes within a graph. To empower GNNs with the awareness of node positions, some nodes are set as anchors. Then, using the distances from a node to the anchors, GNNs can infer relative positions between nodes. However, position-aware GNNs (P-GNNs) arbitrarily select anchors, leading to compromising position awareness and feature extraction. To eliminate this compromise, we demonstrate that selecting evenly distributed and asymmetric anchors is essential. On the other hand, we show that choosing anchors that can aggregate embeddings of all the nodes within a graph is NP-complete. Therefore, devising efficient optimal algorithms in a deterministic approach is practically not feasible. To ensure position awareness and bypass NP-completeness, we propose position-sensing GNNs (PSGNNs), learning how to choose anchors in a backpropagatable fashion. Experiments verify the effectiveness of PSGNNs against state-of-the-art GNNs, substantially improving performance on various synthetic and real-world graph datasets while enjoying stable scalability. Specifically, PSGNNs on average boost area under the curve (AUC) more than 14% for pairwise node classification and 18% for link prediction over the existing state-of-the-art position-aware methods. Our source code is publicly available at: https://github.com/ZhenyueQin/PSGNN.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2489-2505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039176

RESUMO

This article aims to use graphic engines to simulate a large number of training data that have free annotations and possibly strongly resemble to real-world data. Between synthetic and real, a two-level domain gap exists, involving content level and appearance level. While the latter is concerned with appearance style, the former problem arises from a different mechanism, i.e., content mismatch in attributes such as camera viewpoint, object placement and lighting conditions. In contrast to the widely-studied appearance-level gap, the content-level discrepancy has not been broadly studied. To address the content-level misalignment, we propose an attribute descent approach that automatically optimizes engine attributes to enable synthetic data to approximate real-world data. We verify our method on object-centric tasks, wherein an object takes up a major portion of an image. In these tasks, the search space is relatively small, and the optimization of each attribute yields sufficiently obvious supervision signals. We collect a new synthetic asset VehicleX, and reformat and reuse existing the synthetic assets ObjectX and PersonX. Extensive experiments on image classification and object re-identification confirm that adapted synthetic data can be effectively used in three scenarios: training with synthetic data only, training data augmentation and numerically understanding dataset content.

3.
JMIR Hum Factors ; 10: e46849, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477969

RESUMO

BACKGROUND: The prevalence of child and adolescent mental health issues is increasing faster than the number of services available, leading to a shortfall. Mental health chatbots are a highly scalable method to address this gap. Manage Your Life Online (MYLO) is an artificially intelligent chatbot that emulates the method of levels therapy. Method of levels is a therapy that uses curious questioning to support the sustained awareness and exploration of current problems. OBJECTIVE: This study aimed to assess the feasibility and acceptability of a co-designed interface for MYLO in young people aged 16 to 24 years with mental health problems. METHODS: An iterative co-design phase occurred over 4 months, in which feedback was elicited from a group of young people (n=7) with lived experiences of mental health issues. This resulted in the development of a progressive web application version of MYLO that could be used on mobile phones. We conducted a case series to assess the feasibility and acceptability of MYLO in 13 young people over 2 weeks. During this time, the participants tested MYLO and completed surveys including clinical outcomes and acceptability measures. We then conducted focus groups and interviews and used thematic analysis to obtain feedback on MYLO and identify recommendations for further improvements. RESULTS: Most participants were positive about their experience of using MYLO and would recommend MYLO to others. The participants enjoyed the simplicity of the interface, found it easy to use, and rated it as acceptable using the System Usability Scale. Inspection of the use data found evidence that MYLO can learn and adapt its questioning in response to user input. We found a large effect size for the decrease in participants' problem-related distress and a medium effect size for the increase in their self-reported tendency to resolve goal conflicts (the proposed mechanism of change) in the testing phase. Some patients also experienced a reliable change in their clinical outcome measures over the 2 weeks. CONCLUSIONS: We established the feasibility and acceptability of MYLO. The initial outcomes suggest that MYLO has the potential to support the mental health of young people and help them resolve their own problems. We aim to establish whether the use of MYLO leads to a meaningful reduction in participants' symptoms of depression and anxiety and whether these are maintained over time by conducting a randomized controlled evaluation trial.

4.
IEEE Trans Affect Comput ; 14(1): 133-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938342

RESUMO

Given the prevalence of depression worldwide and its major impact on society, several studies employed artificial intelligence modelling to automatically detect and assess depression. However, interpretation of these models and cues are rarely discussed in detail in the AI community, but have received increased attention lately. In this study, we aim to analyse the commonly selected features using a proposed framework of several feature selection methods and their effect on the classification results, which will provide an interpretation of the depression detection model. The developed framework aggregates and selects the most promising features for modelling depression detection from 38 feature selection algorithms of different categories. Using three real-world depression datasets, 902 behavioural cues were extracted from speech behaviour, speech prosody, eye movement and head pose. To verify the generalisability of the proposed framework, we applied the entire process to depression datasets individually and when combined. The results from the proposed framework showed that speech behaviour features (e.g. pauses) are the most distinctive features of the depression detection model. From the speech prosody modality, the strongest feature groups were F0, HNR, formants, and MFCC, while for the eye activity modality they were left-right eye movement and gaze direction, and for the head modality it was yaw head movement. Modelling depression detection using the selected features (even though there are only 9 features) outperformed using all features in all the individual and combined datasets. Our feature selection framework did not only provide an interpretation of the model, but was also able to produce a higher accuracy of depression detection with a small number of features in varied datasets. This could help to reduce the processing time needed to extract features and creating the model.

5.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560213

RESUMO

The prevalent convolutional neural network (CNN)-based image denoising methods extract features of images to restore the clean ground truth, achieving high denoising accuracy. However, these methods may ignore the underlying distribution of clean images, inducing distortions or artifacts in denoising results. This paper proposes a new perspective to treat image denoising as a distribution learning and disentangling task. Since the noisy image distribution can be viewed as a joint distribution of clean images and noise, the denoised images can be obtained via manipulating the latent representations to the clean counterpart. This paper also provides a distribution-learning-based denoising framework. Following this framework, we present an invertible denoising network, FDN, without any assumptions on either clean or noise distributions, as well as a distribution disentanglement method. FDN learns the distribution of noisy images, which is different from the previous CNN-based discriminative mapping. Experimental results demonstrate FDN's capacity to remove synthetic additive white Gaussian noise (AWGN) on both category-specific and remote sensing images. Furthermore, the performance of FDN surpasses that of previously published methods in real image denoising with fewer parameters and faster speed.


Assuntos
Artefatos , Redes Neurais de Computação , Distribuição Normal , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-36121957

RESUMO

Skeleton sequences are lightweight and compact and thus are ideal candidates for action recognition on edge devices. Recent skeleton-based action recognition methods extract features from 3-D joint coordinates as spatial-temporal cues, using these representations in a graph neural network for feature fusion to boost recognition performance. The use of first-and second-order features, that is, joint and bone representations, has led to high accuracy. Nonetheless, many models are still confused by actions that have similar motion trajectories. To address these issues, we propose fusing higher-order features in the form of angular encoding (AGE) into modern architectures to robustly capture the relationships between joints and body parts. This simple fusion with popular spatial-temporal graph neural networks achieves new state-of-the-art accuracy in two large benchmarks, including NTU60 and NTU120, while employing fewer parameters and reduced run time. Our source code is publicly available at: https://github.com/ZhenyueQin/Angular-Skeleton-Encoding.

7.
Artif Life ; 28(2): 240-263, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148365

RESUMO

Discrete gene regulatory networks (GRNs) play a vital role in the study of robustness and modularity. A common method of evaluating the robustness of GRNs is to measure their ability to regulate a set of perturbed gene activation patterns back to their unperturbed forms. Usually, perturbations are obtained by collecting random samples produced by a predefined distribution of gene activation patterns. This sampling method introduces stochasticity, in turn inducing dynamicity. This dynamicity is imposed on top of an already complex fitness landscape. So where sampling is used, it is important to understand which effects arise from the structure of the fitness landscape, and which arise from the dynamicity imposed on it. Stochasticity of the fitness function also causes difficulties in reproducibility and in post-experimental analyses. We develop a deterministic distributional fitness evaluation by considering the complete distribution of gene activity patterns, so as to avoid stochasticity in fitness assessment. This fitness evaluation facilitates repeatability. Its determinism permits us to ascertain theoretical bounds on the fitness, and thus to identify whether the algorithm has reached a global optimum. It enables us to differentiate the effects of the problem domain from those of the noisy fitness evaluation, and thus to resolve two remaining anomalies in the behaviour of the problem domain of Espinosa-Soto and A. Wagner (2010). We also reveal some properties of solution GRNs that lead them to be robust and modular, leading to a deeper understanding of the nature of the problem domain. We conclude by discussing potential directions toward simulating and understanding the emergence of modularity in larger, more complex domains, which is key both to generating more useful modular solutions, and to understanding the ubiquity of modularity in biological systems.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Reprodutibilidade dos Testes
8.
JMIR Med Inform ; 7(2): e11499, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31021325

RESUMO

BACKGROUND: Deep learning (DL) has been widely used to solve problems with success in speech recognition, visual object recognition, and object detection for drug discovery and genomics. Natural language processing has achieved noticeable progress in artificial intelligence. This gives an opportunity to improve on the accuracy and human-computer interaction of clinical informatics. However, due to difference of vocabularies and context between a clinical environment and generic English, transplanting language models directly from up-to-date methods to real-world health care settings is not always satisfactory. Moreover, the legal restriction on using privacy-sensitive patient records hinders the progress in applying machine learning (ML) to clinical language processing. OBJECTIVE: The aim of this study was to investigate 2 ways to adapt state-of-the-art language models to extracting patient information from free-form clinical narratives to populate a handover form at a nursing shift change automatically for proofing and revising by hand: first, by using domain-specific word representations and second, by using transfer learning models to adapt knowledge from general to clinical English. We have described the practical problem, composed it as an ML task known as information extraction, proposed methods for solving the task, and evaluated their performance. METHODS: First, word representations trained from different domains served as the input of a DL system for information extraction. Second, the transfer learning model was applied as a way to adapt the knowledge learned from general text sources to the task domain. The goal was to gain improvements in the extraction performance, especially for the classes that were topically related but did not have a sufficient amount of model solutions available for ML directly from the target domain. A total of 3 independent datasets were generated for this task, and they were used as the training (101 patient reports), validation (100 patient reports), and test (100 patient reports) sets in our experiments. RESULTS: Our system is now the state-of-the-art in this task. Domain-specific word representations improved the macroaveraged F1 by 3.4%. Transferring the knowledge from general English corpora to the task-specific domain contributed a further 7.1% improvement. The best performance in populating the handover form with 37 headings was the macroaveraged F1 of 41.6% and F1 of 81.1% for filtering out irrelevant information. Performance differences between this system and its baseline were statistically significant (P<.001; Wilcoxon test). CONCLUSIONS: To our knowledge, our study is the first attempt to transfer models from general deep models to specific tasks in health care and gain a significant improvement. As transfer learning shows its advantage over other methods, especially on classes with a limited amount of training data, less experts' time is needed to annotate data for ML, which may enable good results even in resource-poor domains.

9.
Physiol Meas ; 40(1): 014002, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30523843

RESUMO

OBJECTIVE: We introduced a novel framework to identify the dynamic pattern of blood flow changes in the cutaneous superficial blood vessels of the face for 'fight or flight' responses through facial thermal imaging. APPROACH: For this purpose, a thermal dataset was collected from 41 subjects in a mock crime scenario. Five facial areas including periorbital, forehead, perinasal, cheek and chin were selected on the face. Due to the cause and effect movement of blood in the facial cutaneous vasculature, the effective connectivity approach and graph analysis were used to extract causality features. The effective connectivity was quantified using a modified version of the multivariate Granger causality (GC) method among each pair of facial region of interests. MAIN RESULTS: Validation was performed using statistical analysis, and the results demonstrated that the proposed method was statistically significant in detecting the physiological pattern of deceptive anxiety on the face. Moreover, the obtained graph is visualized by different schemes to show these interactions more effectively. We used machine learning techniques to classify our data based on the GC values, which result in a greater than 87% accuracy rate in discriminating between deceptive and truthful subjects.


Assuntos
Vasos Sanguíneos/fisiologia , Face/irrigação sanguínea , Adolescente , Adulto , Face/diagnóstico por imagem , Feminino , Humanos , Masculino , Imagem Óptica , Fluxo Sanguíneo Regional , Adulto Jovem
10.
Front Psychol ; 7: 1790, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909418

RESUMO

Information foraging connects optimal foraging theory in ecology with how humans search for information. The theory suggests that, following an information scent, the information seeker must optimize the tradeoff between exploration by repeated steps in the search space vs. exploitation, using the resources encountered. We conjecture that this tradeoff characterizes how a user deals with uncertainty and its two aspects, risk and ambiguity in economic theory. Risk is related to the perceived quality of the actually visited patch of information, and can be reduced by exploiting and understanding the patch to a better extent. Ambiguity, on the other hand, is the opportunity cost of having higher quality patches elsewhere in the search space. The aforementioned tradeoff depends on many attributes, including traits of the user: at the two extreme ends of the spectrum, analytic and wholistic searchers employ entirely different strategies. The former type focuses on exploitation first, interspersed with bouts of exploration, whereas the latter type prefers to explore the search space first and consume later. Our findings from an eye-tracking study of experts' interactions with novel search interfaces in the biomedical domain suggest that user traits of cognitive styles and perceived search task difficulty are significantly correlated with eye gaze and search behavior. We also demonstrate that perceived risk shifts the balance between exploration and exploitation in either type of users, tilting it against vs. in favor of ambiguity minimization. Since the pattern of behavior in information foraging is quintessentially sequential, risk and ambiguity minimization cannot happen simultaneously, leading to a fundamental limit on how good such a tradeoff can be. This in turn connects information seeking with the emergent field of quantum decision theory.

11.
Australas Med J ; 5(9): 489-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23115583

RESUMO

BACKGROUND: The constantly growing publication rate of medical research articles puts increasing pressure on medical specialists who need to be aware of the recent developments in their field. The currently used literature retrieval systems allow researchers to find specific papers; however the search task is still repetitive and time-consuming. AIM: In this paper we describe a system that retrieves medical publications by automatically generating queries based on data from an electronic patient record. This allows the doctor to focus on medical issues and provide an improved service to the patient, with higher confidence that it is underpinned by current research. METHOD: Our research prototype automatically generates query terms based on the patient record and adds weight factors for each term. Currently the patient's age is taken into account with a fuzzy logic derived weight, and terms describing blood-related anomalies are derived from recent blood test results. Conditionally selected homonyms are used for query expansion. The query retrieves matching records from a local index of PubMed publications and displays results in descending relevance for the given patient. Recent publications are clearly highlighted for instant recognition by the researcher. RESULTS: Nine medical specialists from the Royal Adelaide Hospital evaluated the system and submitted pre-trial and post-trial questionnaires. Throughout the study we received positive feedback as doctors felt the support provided by the prototype was useful, and which they would like to use in their daily routine. CONCLUSION: By supporting the time-consuming task of query formulation and iterative modification as well as by presenting the search results in order of relevance for the specific patient, literature retrieval becomes part of the daily workflow of busy professionals.

12.
Comput Methods Programs Biomed ; 108(3): 1287-301, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22921417

RESUMO

Stress is a major growing concern in our day and age adversely impacting both individuals and society. Stress research has a wide range of benefits from improving personal operations, learning, and increasing work productivity to benefiting society - making it an interesting and socially beneficial area of research. This survey reviews sensors that have been used to measure stress and investigates techniques for modelling stress. It discusses non-invasive and unobtrusive sensors for measuring computed stress, a term we coin in the paper. Sensors that do not impede everyday activities that could be used by those who would like to monitor stress levels on a regular basis (e.g. vehicle drivers, patients with illnesses linked to stress) is the focus of the discussion. Computational techniques have the capacity to determine optimal sensor fusion and automate data analysis for stress recognition and classification. Several computational techniques have been developed to model stress based on techniques such as Bayesian networks, artificial neural networks, and support vector machines, which this survey investigates. The survey concludes with a summary and provides possible directions for further computational stress research.


Assuntos
Biologia Computacional , Estresse Fisiológico , Coleta de Dados , Frequência Cardíaca , Humanos , Pele
13.
Artigo em Inglês | MEDLINE | ID: mdl-23366249

RESUMO

Automated channel selection allows the dimension of EEG data to be reduced without expert knowledge. We introduce Recursive Channel Insertion, an extension to Recursive Channel Elimination, which dramatically reduces calculation time with no loss of accuracy. Furthermore we propose Repeated Recursive Channel Insertion, which shows an improvement in accuracy over the previous methods when tested on a standard dataset.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-23366489

RESUMO

Ideal Brain Computer Interfaces need to perform asynchronously and at real time. We propose Hidden Semi-Markov Models (HSMM) to better segment and classify EEG data. The proposed HSMM method was tested against a simple windowed method on standard datasets. We found that our HSMM outperformed the simple windowed method. Furthermore, due to the computational demands of the algorithm, we adapted the HSMM algorithm to an online setting and demonstrate that this faster version of the algorithm can run in real time.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Cadeias de Markov , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...